Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int Rev Neurobiol ; 169: 259-315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37482395

RESUMEN

Since the discovery of the treatment for Wilson disease a growing number of treatable inherited dystonias have been identified and their search and treatment have progressively been implemented in the clinics of patients with dystonia. While waiting for gene therapy to be more widely and adequately translated into the clinical setting, the efforts to divert the natural course of dystonia reside in unveiling its pathogenesis. Specific metabolic treatments can rewrite the natural history of the disease by preventing neurotoxic metabolite accumulation or interfering with the cell accumulation of damaging metabolites, restoring energetic cell fuel, supplementing defective metabolites, and supplementing the defective enzyme. A metabolic derangement of cell homeostasis is part of the progression of many non-metabolic genetic lesions and could be the target for possible metabolic approaches. In this chapter, we provided an update on treatment strategies for treatable inherited dystonias and an overview of genetic dystonias with new experimental therapeutic approaches available or close to clinical translation.


Asunto(s)
Distonía , Trastornos Distónicos , Degeneración Hepatolenticular , Enfermedades Metabólicas , Humanos , Trastornos Distónicos/genética , Enfermedades Metabólicas/tratamiento farmacológico , Redes y Vías Metabólicas
2.
Hum Mol Genet ; 31(6): 929-941, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-34622282

RESUMEN

Dominant GNAO1 mutations cause an emerging group of childhood-onset neurological disorders characterized by developmental delay, intellectual disability, movement disorders, drug-resistant seizures and neurological deterioration. GNAO1 encodes the α-subunit of an inhibitory GTP/GDP-binding protein regulating ion channel activity and neurotransmitter release. The pathogenic mechanisms underlying GNAO1-related disorders remain largely elusive and there are no effective therapies. Here, we assessed the functional impact of two disease-causing variants associated with distinct clinical features, c.139A > G (p.S47G) and c.662C > A (p.A221D), using Caenorhabditis elegans as a model organism. The c.139A > G change was introduced into the orthologous position of the C. elegans gene via CRISPR/Cas9, whereas a knock-in strain carrying the p.A221D variant was already available. Like null mutants, homozygous knock-in animals showed increased egg laying and were hypersensitive to aldicarb, an inhibitor of acetylcholinesterase, suggesting excessive neurotransmitter release by different classes of motor neurons. Automated analysis of C. elegans locomotion indicated that goa-1 mutants move faster than control animals, with more frequent body bends and a higher reversal rate and display uncoordinated locomotion. Phenotypic profiling of heterozygous animals revealed a strong hypomorphic effect of both variants, with a partial dominant-negative activity for the p.A221D allele. Finally, caffeine was shown to rescue aberrant motor function in C. elegans harboring the goa-1 variants; this effect is mainly exerted through adenosine receptor antagonism. Overall, our findings establish a suitable platform for drug discovery, which may assist in accelerating the development of new therapies for this devastating condition, and highlight the potential role of caffeine in controlling GNAO1-related dyskinesia.


Asunto(s)
Proteínas de Caenorhabditis elegans , Discinesias , Acetilcolinesterasa/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cafeína/farmacología , Evaluación Preclínica de Medicamentos , Discinesias/tratamiento farmacológico , Discinesias/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/farmacología , Proteínas de Unión al GTP/genética , Mutación , Neurotransmisores/metabolismo
3.
Mov Disord Clin Pract ; 7(2): 154-166, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32071932

RESUMEN

BACKGROUND: About 80% of monogenic metabolic diseases causing movement disorders (MDs) emerges during the first 2 decades of life, and a number of these conditions offers the opportunity of a disease-modifying treatment. The implementation of enlarged neonatal screening programs and the impressive rapid increase of the identification of new conditions are enhancing our potential to recognize and treat several diseases causing MDs, changing their outcome and phenotypic spectrum. METHODS AND FINDINGS: A literature review of monogenic disorders causing MDs amenable to treatment was conducted focusing on early clinical signs and diagnostic biomarkers. A classification in 3 broad categories based on the therapeutic approach has been proposed. Some disorders result in irreversible neurotoxic lesions that can only be prevented if treated in a presymptomatic stage, and others present with a progressive neurological impairment that a timely diagnosis and treatment may reverse or improve. Some MDs are the result of the failure of intracellular energy supply or altered glucose transport. The treatment in these conditions includes vitamins or a metabolic shift from a carbohydrate to a fatty acid catabolism, respectively. Finally, a group of highly treatable MDs are the result of defects of neurotransmitter metabolism. In these disorders, the supplementation of precursors or mimetics of neurotransmitters can deeply change the disease natural history. CONCLUSIONS: To prevent serious and irreversible neurological impairment, the diagnostic work-up of MDs in children should consider a number of clinical red flags and biomarkers denoting specifically treatable diseases.

4.
Parkinsonism Relat Disord ; 68: 8-16, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31621627

RESUMEN

Cerebellar ataxia is a hallmark of coenzyme Q10 (CoQ10) deficiency associated with COQ8A mutations. We present four patients, one with novel COQ8A pathogenic variants all with early, prominent handwriting impairment, dystonia and only mild ataxia. To better define the phenotypic spectrum and course of COQ8A disease, we review the clinical presentation and evolution in 47 reported cases. Individuals with COQ8A mutation display great clinical variability and unpredictable responses to CoQ10 supplementation. Onset is typically during infancy or childhood with ataxic features associated with developmental delay or regression. When disease onset is later in life, first symptoms can include: incoordination, epilepsy, tremor, and deterioration of writing. The natural history is characterized by a progression to a multisystem brain disease dominated by ataxia, with disease severity inversely correlated with age at onset. Six previously reported cases share with ours, a clinical phenotype characterized by slowly progressive or static writing difficulties, focal dystonia, and speech disorder, with only minimal ataxia. The combination of writing difficulty, dystonia and ataxia is a distinctive constellation that is reminiscent of a previously described clinical entity called Dystonia Ataxia Syndrome (DYTCA) and is an important clinical indicator of COQ8A mutations, even when ataxia is mild or absent.


Asunto(s)
Ataxia , Progresión de la Enfermedad , Trastornos Distónicos , Escritura Manual , Heterocigoto , Enfermedades Mitocondriales , Proteínas Mitocondriales/genética , Debilidad Muscular , Ubiquinona/deficiencia , Adulto , Ataxia/complicaciones , Ataxia/epidemiología , Ataxia/etiología , Ataxia/genética , Ataxia/fisiopatología , Niño , Trastornos Distónicos/epidemiología , Trastornos Distónicos/etiología , Trastornos Distónicos/genética , Trastornos Distónicos/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/epidemiología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Debilidad Muscular/complicaciones , Debilidad Muscular/epidemiología , Debilidad Muscular/genética , Debilidad Muscular/fisiopatología , Ubiquinona/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA